Gardens Point Component Pascal — Change Log

John Gough
January 14, 2013

’ This document applies to GPCP version 1.3.16 ‘

1 About Gardens Point Component Pascal (gpcp)

Gardens Point Component Pascal (gpcp) is an implementation of the Component Pas-
cal Language, as defined in the Component Pascal Report from Oberon Microsystems.
It is intended that this be a faithful implementation of the Report, except for those
differences that are explicitly detailed in the Release Notes. Any other differences in
detail should be reported as potential bugs.

The distribution consists of four programs, and a number of libraries. The pro-
grams are the compiler gpcp, the make utility CPMake, a module interface browser
tool Browse, and a tool for extracting public symbol metadata from assemblies written
in other .NET languages PeToCps.

The compiler produces either . NET Common Intermediate Language (CIL) or Java
byte-codes as output. The compiler can be bootstrapped on either platform.

2 Tracking the Changes
2.1 Where to get gpcp

Updates are announced and available from http://gpcp.codeplex.com

2.2 How to Report Bugs

If you find what you believe is a bug, please file an issue on the CodePlex project page
with the detail of the event. It would be particularly helpful if you can send the code of
the shortest program which can illustrate the error.

2.3 Posting to the Mail Group

There is a discussion group for users of gpcp. You may subscribe by sending an email
to GPCP-subscribe @yahoogroups.com. The development team monitor traffic on the
group, and post update messages there.


http://gpcp.codeplex.com
mailto:GPCP-subscribe@yahoogroups.com

2 TRACKING THE CHANGES 2

24

Change summary

Changes from 1.3.15

The following corrections and changes are included in the 1.3.16 release.

*

Fixed a bug with builtin arithmetic shift function ASH when applied to 64-bit
operands.

Added new builtin logical shift function LSH. This function applies to 32 and
64-bit integers. As for the standard ASH function, positive shifts are leftward.

The semantics of both shift operations have been changed. Shift amount is now
range checked, and shifts of greater than or equal to data-word width return zero
or minus one as required.

Added new builtin rotate function ROT. This generic function can rotate any
integer-typed value from 8 to 64-bits. As with the shift functions, positive shifts
are leftward.

Fixed a bug with anonymous return types of procedures. Thus, public procedures
may return (pointers to) anonymous arrays of public types without error.

Corrected an error with anonymous procedure types on the JVM version.

The IL emitter of the .NET version now uses the invariant culture to write REAL
literal values. This fixes an issue for host machines with non-Anglocentric local-
ization settings.

Changes from 1.3.14

The following change is included in the 1.3.15 release.

*

*

The prohibition on writing to the guarded variable within a WITH statement has
been varied to make it compatible with the behavior of BlackBox Component
Builder. If the guarded variable is of record type it is now allowed to write to
the fields. However any attempt to change the type of the guarded variable is a
semantic error.

The behavior with pointer types is unchanged. The fields of the object may be
written to, but the pointer itself is read-only.

Changes from 1.3.13

The following corrections and changes are included in the 1.3.14 release.

*

Procedure Types and variables are now supported for the JVM target, with the
same limitation as for the .NET target. Specifically, values of procedure type
are compatible if the types have the same name. The Report requires that values
with the same signature be compatible.

A error in the generation of the value copy runtime support methods for the
JVM target has been corrected. The error was rather obscure, but caused some
permitted entire assignments to fail to copy some base-class fields under certain
specific circumstances.



2 TRACKING THE CHANGES 3

Changes from 1.3.12

The following corrections and changes are included in the 1.3.13 release.

*

*

A significant rewrite of J2CPS has corrected a bug. The bug caused a module
import to be missed under certain very specific, rare circumstances.

gpcp now populates the definition of RTS.NativeObject with the appropriate
methods from the underlying platform base type, java.lang.Object or or Sys-
tem.Object, depending on the target platform setting. This means that, for exam-
ple, a type derived from RTS.NativeObject may override these methods without
an explicit import of the whole of the system module.

Changes from 1.3.11

The following corrections and changes are included in the 1.3.12 release.

*

Symbol file reading and writing have been modified so that string literals may
include arbitrary Unicode, and be of unbounded size.

Literal handling throughout the compiler has been rewritten to allow for the pos-
sibility that strings might contain embedded NUL characters.

Reading and writing of Unicode character sequences in symbol files now uses
modified UTF-8.

A new pseudo-module import STA causes the compiler to emit a code wrapper
that runs the module body in a new thread with the STA property set to true.

Some significant errors in the implementation of vectors of CHAR element type
have been corrected, as has some inconsistency in the implementation of entire
assignment for the vector types.

Some programs that imported both RTS and mscorlib were were finding that
native string receivers were being denied access to the inherited methods of Sys-
tem.Object. This is now fixed.

Programs using the TYPEOF extension function now work correctly when com-
piled with PERWAPI.

One consequence of these changes is that conversions between character arrays, string
literals and open arrays of characters have been made consistent with the language
standard. This might constitute a breaking change for programs that were relying on
an implicit “stringification” of an argument array. Within the code of the compiler
there was exactly one case where a call that passed an argument array “arr’ had to be
changed to the correct, “arrs”, form.

Changes from 1.3.10

The following corrections and changes are included in the 1.3.11 release.

*

*

A new diagnostic message is added for unresolved opaque types when using the
/perwapi option.

When an opaque type is unresolved due to a missing import the PEFile Writer
attempts to correct the situation by generating a dummy import and a correspond-
ing type-ref descriptor.



2 TRACKING THE CHANGES 4

Changes from 1.3.9

The following corrections and changes are included in the 1.3.10 release.

*

The resolution of calls to overloaded methods from foreign language libraries
now takes place in two steps. First an exact match of the argument types to the
method formals is attempted, followed, if necessary, by a match which uses no
type conversions other than between the Component Pascal character array types
and the platform string type, and between the Component Pascal ANYREC and
ANYPTR types and the platform object type.

The dummy symbol files produced by PeToCps from PE-files now ignores non-
CLS compliant methods that Component Pascal cannot call.

Some corrections to the encoding of the “vector types” extension avoid verifier
objections.

Some corrections to code of the separate PERWAPI project avoid certain failures
of PeToCps.

PeToCps does not create version information in symbol files for PE-files that are
versioned but not strongly named.

gpcp now produces code for procedures with covariant return types that is veri-
fiable.

The RealStr library now uses the invariant culture methods from the runtime
system for RealToStr and StrToReal. If you need the localized methods you may
directly access the methods in the runtime system library “RTS.d11”.

The gpcp scanner also now uses the invariant culture methods for real literals
uniformly in all cases.

The symbol file for the ProgArgs library now reveals the previously undocu-
mented method GetEnvVar which (only in the .NET version) returns environ-
ment variable strings.

The changes to overload resolution do not constitute a breaking change, since all pre-
viously working cases will still work. However, a useful set of extra cases are handled.
See also the comments in the new example program Params.cp in the NETexamples
directory.

Changes from 1.3.8

The following corrections are included in the 1.3.9 release.

*

*

*

PeToCps extracts public key tokens from PE-files using new methods of PER-
WAPI. This avoids an issue with compact framework libraries.

BOX once again works correctly on .NET framework structs.

Constructors with arguments for Component Pascal types that extend foreign
classes now work as documented.



2 TRACKING THE CHANGES 5

Changes from 1.3.6

The following changes and corrections are included in the 1.3.8 release.

*

PeToCps has been extended to correctly deal with foreign PE-files from the com-
pact framework.

Limited records may be extended, but only in the defining module. New error
messages are attached to the new semantic checks.

New switch /quiet makes gpcp run silently whenever possible.

New switch /cpsym=XXX allows the symbol file lookup path to be varied from
the command line.

CPMake may be started on a module which is not a “main” module. If a non-
main module is used as a starting point a warning is issued to ensure that the
choice was deliberate.

Uninitialized local variables of pointer type now attract only a warning.

Empty CASE and WITH statements no longer cause the compiler to trap, but
attract a warning in the absence of an ELSE branch.

Browse now emits import statements in v1.3.6 extended syntax.

The new import syntax is disallowed when /strict is in force.

Changes from 1.3.4

The following changes and corrections are included in the 1.3.6 release.

*

The import declaration syntax is extended to allow foreign imports to be declared
using their .NET syntax rather than by using the canonicalized names generated
by PeToCps.

Latin-8 characters are permitted in identifiers and strings.

Much improved error reporting based on text-spans rather than (line, column)
pairs. This feature also upgrades the stepping behavior in the GuiDebug debug-
ger.

New /perwapi option forces use of PERWAPI even when producing debug-
gable PE-files. This depends on the new version of PERWAPI, which can read
and write x . pdb files.

A bug in the parsing of numeric tokens ending in H and L is fixed.

New errors are reported for numbers too large for H format, and for numbers
even too large for L format.

A bug in the BITS function on integers larger than max-int has been fixed.



2 TRACKING THE CHANGES 6

Changes from 1.3.3
The following changes and corrections are included in the 1.3.4 release.

+ A more flexible canonicalization of assembly names has been introduced, to al-
low access to assemblies with filenames containing characters illegal in Compo-
nent Pascal identifiers

+ Fixed some incorrect cases of coercion of character arrays to native strings

+ Fixed some incorrect cases of usage for MIN, MAX and INC for short integral
types

= Fixed an error in some usages of arrays of procedure types

Changes from 1.3.0
The following changes and corrections are included in the 1.3.1 release.

* A new symbol file generator PeToCps replaces N2CPS. As a result, static meth-
ods, fields and constants are available for the system value types that map into
the built-in types of Component Pascal.

% Browse displays the names of formal parameters if these are available in the
symbol file. Browse has a new “/hex” option so as to output integer literals in
hexadecimal notation. Browse has a new ‘/sort” option so as to output types and
static features in sorted order.

+ LEN now allows an argument that is an array typename, as well as the traditional
case of a variable designator.

+ New Built-in constants INF, NEGINF have been implemented. These may be
used either as REAL or SHORTREAL values.

* The treatment of foreign modules that overload member names with fields as
well as methods are now correctly handled. This is permissible behaviour in
Java, but not C#.

x Calls of NEW on open arrays with multiple dimensions now correctly handle
arbitrary expressions in the length arguments.

+ Extremely long method signature strings in the JVM emitter now no longer cause
a compiler panic.
Changes from 1.2.0
The following changes and corrections are included in the 1.2.x release.
x Support for boxing and unboxing of CLS value types is included.
+ The vector types have been included.

+ The parser now allows return types and formal parameters to be anonymous
constructed types. The compiler gives a warning when the type so defined will
be inaccessible and hence useless.



2 TRACKING THE CHANGES 7

*

A string library StringLib has been included.
Some corrections have been made to the RealStr library.

The “WinMain” pseudo-module introduced to mark base modules for windows
executables that do not start a console when launched.

Unsafe facilities in module “sYSTEM” introduced.

Enhanced compatability between native strings, string literals and character lit-
erals.

Correction to the semantics of subset inclusion tests, both versions.

Changes from 1.1.6

The following changes and corrections are included in the 1.2.0 release.

*

The semantics of “super-calls” were incorrect in the case that the immediate
super-type did not define the method being overridden. In version 1.2 the nota-
tion “Foo” ()~ denotes the overridden method no matter how distant it is in the
inheritance hierarchy.

New options have been implemented for output directories.

The default behavior for the “/nodebug” option is to use the direct PE-file
writer. This is significantly faster than going through ilasm. Unfortunately,
this new file-writer does not produce debug symbols at this stage. There is sepa-
rate documentation for the PERWAPI component included with this release.

The permitted semantics for constructors with arguments is significantly en-
hanced. This is of some importance when deriving from types that do not have
public no-arg constructors.

Changes from 1.1.4

The following changes and corrections are included in the 1.1.6 release.

*

Uplevel addressing of reference parameters is now permitted in the .NET release,
although this has inexact semantics in some cases.

A number of corrections to the JVM code-emitter have been added.
The new built-in function BOX has been added.
Trapping of types that attempt to indirectly include themselves is improved.

An automatic renaming scheme is implemented for modules that attempt to ex-
port types with the same name as the module on the .NET platform.



2 TRACKING THE CHANGES 8

Changes from 1.1.3

The following changes and corrections are included in the 1.1.4 release.

*

The copyright notice has been revised. gpcp is still open source, but now has a
“FreeBSD-like” licence agreement.

A correction to the Java class-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’t care, but most browsers objected!

It is now permitted to export type-bound procedures of non-exported types, pro-
vided the procedure overrides an exported method of a super-type.

More line-markers are emitted to /L in .NET. This makes it possible to place a
breakpoint on the predicate of a conditional statement, and have the debugger
stop on the predicate rather than the next executable statement.

The type-resolution code of “symFileRW.cp” has been radically revised. It is
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.



	About Gardens Point Component Pascal (gpcp)
	Tracking the Changes
	Where to get gpcp
	How to Report Bugs
	Posting to the Mail Group
	Change summary


