Gardens Point Component Pascal — Release
Notes

John Gough
January 14, 2013

This document applies to GPCP version 1.3.16 for JVM
(Java Virtual Machine)

1 Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component Pas-
cal Language, as defined in the Component Pascal Reporlﬂ from Oberon Microsys-
tems. It is intended that this be a faithful implementation of the Report, except for
those changes that are explicitly detailed here. Any other differences in detail should
be reported as potential bugs.

The distribution consists of four programs, and a number of libraries. The pro-
grams are the compiler gpcp, the make utility CPMake, a module interface browser
tool Browse, and a tool for extracting public symbol metadata from assemblies written
in the J aV language, J2CPS.

The compiler produces either .NET Common Intermediate Language (CIL) or Java
byte-codes as output. The compiler can be bootstrapped on either platform. These
release notes refer to the JVM platform.

There are a number of syntactic extensions to the Component Pascal language ac-
cepted by the compiler which are introduced to allow interworking with the native
libraries of the underlying platform. The guiding philosophy in such cases is to not
significantly extend the semantics of the constructs that form part of Component Pas-
cal, but rather to provide syntax for accessing features of other languages, which have
no direct counterpart in Component Pascal.

2 Overall Structure

2.1 Input and Output files

In normal usage the compiler creates two or more output files for every source file. If
the file “Hello.cp” contains the module Hello, and is compiled, then the output files
will be “Hello.cps” and “Hello.class”.

IThe defining document is simply referred to throughout this document as the Report.
2Java is a registered trademark of Sun Microsystems.

2 OVERALL STRUCTURE 2

In general for a module MName, the “MName . cps” file is the symbol file which
contains the metadata that describes the facilities exported from the module. The pro-
gram executable will be file “MName . class” in the package “Cp.MName”. If the mod-
ule defines any record types, then there will be an additional class file for each such
type, also defined in package “MName”. If a listing file is created it will have filename
name “MName . 1st”. The “MName.cps” and “MName . 1st” files will be created in the
current directory, while all of the class files will be found in the directory “cP/MName”.

Be aware that the stem name of the output files comes from the module name, and
not from the source-file name. Thus if module Foo is in source file “Hello.cp” then
all of the output files will have stem name “Foo”.

By default the compiler writes class files directly. However it is possible to force
gpcep to produce an output text file in the Jasmin byte code assembly language. These
files have filename extension “x . j”. The corresponding class files may then be pro-
duced by manually invoking Jasmin but this is not recommended as, Jasmin does not
handle floating poing literal correctly. Nevertheless, it may be instructive to view the
Jasmin output, in order to understand how programs are encoded for this exectution
platform.

2.2 Invoking the compiler
The compiler is invoked from the command line using the following command line
syntax —
$> cprun gpcp [gpcp-options] files
The gpcp-options are given in Figure [T}
In the .NET versions ““/”is the option prefix, but
of files may be added in a white-space separated list.

[T

is recognized also. Any number

2.3 The cprun script

cprun is a script or batch file that lives in the “gpcp/bin” directory. A corresponding
script cpint invokes the Java system without the just in time interpreter. However,
the Java Runtime System may be invoked directly without using the script, using the
syntax —

$> Java [java-options] CP .gpcp.gpcp [gpcp-options] files
If this format is used then the available Java options allow for a choice of JIT compiler,
output directories, or to pass property values to the Java runtime.

2.4 Target choice
The compiler may choose its output language at runtime. The default output when
running on the JVM platform is Java class files. The recognized options are —

-target=net this is the NET CIL format
~target=jvm this causes Java class files to be emitted

The Java output option produces either JVM class files directly, or produces assembly
language files for the Jasmin byte code assembler.

2 OVERALL STRUCTURE

-clsdir=X setclass file tree root to directory X
—copyright display the copyright notice
—cpsym=XXX use environment variable XXX instead of CPSYM
—dostats emit timing and other statistics
-extras enable experimental compiler features
-help emit this usage prompt
—hsize=N set hashtable size, with NV (0 .. 65000)
-list create an output listing if there are errors (default)
-list+ always create an output listing
-list- never create an output listing
-noasm produce a symbol file, but no il
—nocode create il output, but do not assemble
-nosym produce no output files, not even a symbol file
-quiet make gpcp run silently whenever possible
-strict disallow non-standard language constructs
-special used for creating symbol files for foreign interfaces
-symdir=X place symbol files in directory “X”
-target=X emit assembler output for platform “X”
-verbose chatter on about progress during compilation
-version emit version information
-warn- suppress warning messages from the console
-nowarn same as /warn-
-xmlerror errors are in XML format
Figure 1: gpcp options
Output files

Running the compiler with the —nosym flag causes the input files to be parsed and
type-checked, but no output files are created except possibly a listing file.

If the compiler is run with the —noasm flag, the input files are parsed and type-
checked, and a symbol file is produced for each input file. No assembly language or
program executable file output is produced however.

If the compiler is run with the —nocode flag, the input files are parsed and type-
checked, and a symbol file and Jasmin assembly language files are produced for each
input file. No class files are produced in this case.

If the compiler is run without any flags, the input files are parsed and type-checked,
and a symbol file, and a program class files are produced for each input file.

Output files with “-~target=net” option

If the compiler is run with the —target=net flag, the input files are parsed and
type-checked, and a symbol file and an assembly language file with extension “».11”
will be produced. There are additional program options available in this case. The
compiler can directly produce program executable files, or Common Intermediate Lan-
guage (CIL) assembly language files. CIL is always produced if the “~nocode” option
is given along with “~target=net”.

2 OVERALL STRUCTURE 4

2.5 Runtime checking

On the Java platform there is no facility for efficiently performing arithmetic overflow
tests. On the .NET platform such checks are performed by default, and there is only
a very small speed gain if checks are turned off. Checks may also be turned off on a
per-procedure basis, as described in Section .12} when it is logically necessary to do
so. It is good practice to do this in the source code, even when writing for the JVM
platform in order to ensure that source code is portable between targets.

2.6 Listing output

The compiler, by default, produces a listing file only if there are compile-time errors or
warnings. It is possible to force the compiler to produce a listing, using the “/1ist+”
option. Equally, it is possible to prevent the creation of a listing file even if there are
errors, by using the “/1ist-"" option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the format shown in Figure 2]

1 MODULE BarMod;
2 IMPORT FooMod;

3 TYPE

4 Bar* = POINTER TO ABSTRACT RECORD (FooMod.Foo)
xxx% ———="0Only ABSTRACT basetypes can have abstract extensions

5 i, 3,k : INTEGER

6 END;

7 END BarMod.

Figure 2: Example error message

2.7 Statistics output

If the compiler is invoked with option /dostats then compile time statistics are
produced. Figure3|is an example, compiling the program Browse.
The meaning of the values written to the console is as follows.

+ The compiler imports symbol files in dependency order, if necessary. The maxi-
mum recursion depth for this example turned out to be 3.

% The size of the hash-table, and the number of entries used is shown

+ Import time is the time to read and process metainformation for all imports. In
this example module Browse imports much of the compiler data structures.

* Source time is the time to read the source file into the internal buffer.

+ Parse time is the time to parse the buffer, create the syntax tree and resolve all
identifiers.

+ Analysis time is the time to do type checking, and dataflow analysis.

+ SymWrite time is the time to write out metatdata to the symbol file.

2 OVERALL STRUCTURE 5

E:\gpcp-CLR\work> cprun gpcp -dostats Browse.cp
#gpcp: <Browse> No errors

#gpcp: jvm version 1.3.16 of 01 January 2013
#gpcp: 2613 source lines

#gpcp: import recursion depth 0

#gpcp: 981 entries in hashtable of size 8209

#gpcp: import time 66mSec
#gpcp: source time 34mSec
#gpcp: parse time 33mSec
#gpcp: analysis time 9mSec
#gpcp: symWrite time TmSec
#fgpcp: asmWrite time 430mSec
#gpcp: assemble time OmSec
#gpcp: total time 579mSec

Figure 3: Compile statistics example

+ AsmWrite time is the time to write out the jasmin or class-file output. For this
example in Figure[3]33 class files are written.

+ Assemble time is the time taken to spawn a new process and run jasmin. As-
semble time is always zero if Jasmin is not invoked.

2.8 Setting the hash table size

The compiler uses closed hashing internally, with a default number of identifiers of
82009 in the current version. It is possible to increase the number of entries by means of
the ~hsize=NUMBER option. Numbers up to 66000 are meaningful to the program.

If the hash table overflows, the compiler gives an error message, with a hint to in-
crease the size. There is a example program with the distribution that creates a program
that will break the compiler, so that users may test this feature. The compilation fails
with “~hsize=4000", but succeeds with the default table size.

2.9 Choosing the Output Directories

By default all output files are created in the current directory or in the “. /Ccp” directory
tree. This behavior may be overridden with the options ~clsdir and -symdir.
The symbol file is placed in the directory specified by the option —symdir=target-
directory. Note carefully that if a target directory is chosen that is not on the CPSYM
path then gpcp will not be able to find the symbol files automatically.

Program executable directories, and debug files in the case that debugging symbols
are being created may be placed in a directory tree the root of which is specified by the
—clsdir=target-directory option.

If the .NET target has been chosen then the —symdir option still applies, but
—clsdir option does not. Instead, the binary output files may be place in a directory
specified by a syntactically similar -bindi r option.

2 OVERALL STRUCTURE 6

2.10 The Make utility

The compilation process with Component Pascal guarantees type safety across sepa-
rately compiled module boundaries. Since interface meta-information resides in the
symbol files which gpcp creates, modules must be compiled in an order that respects
the partial order induced by the global importation graph. For complex programs, this
may be difficult to determine manually.

The utility CPMake reads symbol files, and if necessary source files, in order to
determine a valid order of compilation. The syntax for invocation is —

$> cprun CPMake [options] moduleName

The module name may be given with or without a file-extension, but must be the name
of a module which imports module CPMain, that is, it must be a base module. The
module name given to CPMake is case sensitive.

In general, when source files of a program have been modified only a subset of
the modules have to be recompiled. CPMake is able to work out which modules must
be recompiled by checking the date stamps on the files, and also checking the module
hash-keys (“magic numbers”) in the symbol files. If a module has been edited, but
the public interface of the module has not changed a recompilation should compute
a new magic number that is the same as that expected by any previously compiled,
dependent modules. In this case CPMake detects that the dependent modules are still
consistent and do not require recompilation. This “domino-stopping” feature of the
program ensures that a conservative minimum of modules are recompiled.

The options accepted by the program are exactly the options accepted by gpcp,
except for an additional option —all. This option forces compilation of all modules
in the local directory that are in the transitive closure of the “imports” relation with the
base module, irrespective of date stamps and magic numbers.

Hint:

If you use CPMake to bootstrap the compiler on the .NET
platform, be aware that output file-creation will fail if the
output would overwrite any file of a loaded assembly. This
means that you cannot bootstrap gpcp.NET using an instance
of the compiler from the same directory, unless you use the
“—nocode” option and then invoke i 1asm manually, or use the
“~bindir=directory’” option.

2.11 Module Interface Browser

The program Browse reads the symbol file of a module and displays the public inter-
face. This public interface is shown in a form similar to a Component Pascal module.
This “module” shows all the types, variables and procedures that are exported from the
specified module. Only the exported fields of record types are shown. Any exported
procedures are shown as procedure headers only. The output from Browse is not a
proper Component Pascal module and will not compile using gpcp. It simply shows
all of the identifiers that may be imported and used by a client module.
This program is invoked with the command —

$> cprun Browse [options] moduleName(s)

2 OVERALL STRUCTURE 7

The symbol file extension *“. cps” may optionally be included in moduleName. As with
gpcp, any number of files may be added in a white-space separated list. The Browse
program sends its output to the console by default, and has the following options:

-all browse this and all imported modules

-full display full foreign names

—-file write output to the file <moduleName> .bro

-hex display whole-number literals in hexadecimal notation

~html write html output to the file <moduleName>.html -sort sort

type names and class static names in alpha-order

The —al1 option produces output for all of the modules on the global imports graph of
the specified module. The —full option is only meaningful for FOREIGN modules
where the output from Browse will include the full external names for all procedures.
The default for Browse is to only display the internal (Component Pascal) names. See
Section [/| for more on Foreign Language Interfaces. The —file option sends the
output to the file <moduleName> .bro instead of to the console. The —html option
produces hyperlinked html text in the file <moduleName> .html. In the html output
defining occurrences of identifiers are red and are anchored, while module names and
external types are blue and hyperlinked. Figure[]is the html output from the command
“Browse —html ClassMaker’.

MODULE ClassMaker;
IMPORT
RTS,
GPCPcopyright,
Console,
IdDesc;
TYPE
Assemblerx = POINTER TO ABSTRACT RECORD
END;

Assemblerx = POINTER TO ABSTRACT RECORD
modx IdDesc.BlkId;
END;

PROCEDURE (self:Assembler) Assemblex (),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Initx(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Emit« (),NEW,ABSTRACT;
END ClassMaker.

Figure 4: Browse output from gpcp source file ClassMaker.cp

2.12 Symbol File Generator J2CPS

This program generates symbols files corresponding to JVM packages. Taken together
with the Browse tool, this makes the libraries of the Java framework accessible to
Component Pascal users.

The program takes the name of a Java package as argument, and creates a Compo-
nent Pascal-compatible symbol file for the non-private members of the classes of that

3 LEXICAL ISSUES 8

package. The program needs to know how to locate the target package, and may need
to read other symbol files on which the package has a dependency. The program needs
to know both the CPSYM path and the local classpath.
The program is most easily invoked using the shell or batch command j2¢cps. The
usage is —
j2cps JavaPkgName

On my installation this will translate into the command —
java -DCPSYM=cpsym —classpath classpath J2CPS.J2CPS JavaPkgName

where cpsym is the path to the symbol file hierarchy, classpath is the path to the target
classes, and JavaPkgName is the dotted name of the package to process.

The distribution comes with symbol files for the Java libraries. However, if they
need to be rebuilt, the the following steps are necessary —

x Unpack the class files if they are in a “jar” archive file. The runtime system
files are in an archive named “rt . jar” somewhere in your Java Development
Kit.

+ Put the directory containing the class files on your class path.

+ Since you do not want J2CPS to rely on any of the current symbol files, you
should invoke it without a CPSYM property thus —
java —-DCPSYM=. -classpathclasspath J2CPS.J2CPS java.lang

+ Wait for the program to create a megabyte or three of symbol files.

3 Lexical Issues

3.1 Latin-8 Character Set

Versions of gpcp up to V1.3.4 worked correctly with input files that contained only
ASCII characters. The current version allows any characters from ISO 8859-1, the latin-
1 extension of ASCII. Eight-bit characters may now be used in identifiers as described
in the Report.

3.2 Unicode Literal Strings

Component Pascal has a literal string format which does not allow any form of char-
acter escapes. gpcp (from version 1.3.12) allows literal strings to contain any 16-bit
Unicode character, including embedded NUL characters. Strings with this extended
behaviour are defined by the exclamation point prefix —

BangString - “!"” {ANY except "} “"”.

Escape sequences are used to insert characters in the string format. The allowed escape
sequences are —

+ Any of the single character escapes: \0, \a, \b, \£, \n, \r, \", \\, with the
usual ANSI C interpretation.

3 LEXICAL ISSUES 9

+ Two-digit hexadecimal escapes in the form \xhh denoting the same character
as “ohhx” in Component Pascal.

* Any 16-bit Unicode character may be denoted \uhhhh.

where h is any (case insensitive) hexadecimal digit. In this release only Unicode char-
acters from plane-0 are recognized.

“BangStrings” may be used anywhere in a Component Pascal program where an
ordinary literal string may be used. If public constants are defined by a BangString
they are written to and read from symbol files just as other string

3.3 Non-standard Keywords

In order to provide facilities for the foreign language interface there are a total of six
new keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIVO an additional arithmetic operator (C integer division)
REMO an additional arithmetic operator (C integer remainder)
EVENT used to declare multicast delegate type for .NET events
RESCUE used to mark a procedure-level exception catch block
ENUM used in dummy foreign modules in the .NET system
INTERFACE used in dummy foreign modules for defining interfaces
STATIC used to declare static features in dummy foreign modules

Only DIVO, REMO, EVENT and RESCUE may be used in normal programs, the
remainder are used in dummy foreign definition modules.

The following new predefined identifiers have been added. These can be redefined,
but not at the outer lexical level. Definitions for these built-in identifiers are given
below.

UBYTE an unsigned 8-bit integer type

MKSTR function to convert a CP “string” to the native string type
BOX make a dynamically allocated copy of record or array
TYPEOF fetch the runtime type descriptor, for reflection
USHORT convert a value to unsiged byte, with range-check
THROW procedure that (re)throws a native exception object
APPEND appends a new element to an extensible array (vector)

cur shortens an extensible array to the given length
LSH performs a logical (not arithmetic) shift
ROT performs a rotation of its argument

There are some other predefined identifiers used in the extended syntax, but these
are “context sensitive markers” and do not prevent the same names being used for
program identifiers.

3The incorporation of this extention into gpcp was triggered by the fact that some Java libraries define
character-set translation tables using literal strings. This comprehensively broke the previous symbol table
reading/writing code.

3 LEXICAL ISSUES 10

Warning
Remember, if you use any of these non-standard keywords or
built-in identifiers, your program source will not be portable to
other implementations of Component Pascal.

3.4 Java Package and Class Names
Fully qualified names in the Java virtual machine (JVM) comprise three parts.

+ Package name — this defines the directory in which the class files are found. The
package name may be a “dotted name”.

* Class name — the class name
* Feature name — the field or method name.

An example might be —
java.lang.Exception.toString

where java.lang is the package name, Exception is the class name, and toString is a
method name.

In this version of gpcp, the compiler produces one package per module, The pack-
age is the same as the module name. Thus a type-bound procedure called isString()
bound to the type UnaryX in module ExprDesc would have the JVM name —

CP.ExprDesc.ExprName_UnaryX.isString

where CP.ExprDesc is the package name, ExprDesc_UnaryX is the class name, and
isString is the method name.

Procedures and variables at the module level are declared in the JVM as belonging
to a synthetic “class” that contains only static data and code. This implicit static class
has the same name as the module. Thus variable “xId” in module Foo will have the
somewhat boring JVM name —

CP.Foo.Foo::xId

Users of the compiler should almost never have to deal with explicit JVM names.

All aspects of the default naming scheme may be overridden, if required. Such a
necessity might arise if the Component Pascal code must interface with a framework
that has particular naming patterns hardwired in. The details of the mechanisms for
overriding are given in Appendix

3.5 Identifier syntax

The identifier syntax for Component Pascal allows arbitrary use of the underscore (low-
line character). There is a further extension that is specific to the foreign language
interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash
with CP reserved words. In this case, we may escape the reserve word detection by
starting the identifier with the back-quote character, “*”. Thus, if an imported mod-
ule has (say) a class with a field named “1F”, then the field may be referenced as
“*IF” in the source of your program. You may not define identifiers using this escape
mechanism, except in foreign definition modules. You may however refer to imported
identifiers using this mechanism.

4 SEMANTIC ISSUES 11

It may be important to know that the back-quote is stripped at the time that the
program is scanned. The presence of the escape simply suppresses the usual check
for reserved identifiers that normally follows identifier scanning. Thus the back-quote
is not used during any name matching of identifiers. A curious result of this strategy
is that if a program escapes an identifier that does not need it, the escaped and non-
escaped identifiers will refer to the same name.

4 Semantic Issues

4.1 Class files and entry points

The compiler produces one or more class files from each module which it compiles.
Classes may be dynamically loaded, or may contain an entry point with the Java lan-
guage signature —

public static void main(java.lang.string[] args)

This entry point method takes a possibly empty array of native-strings as argument.
Any command line arguments are accessed through the library ProgArgs.

If the source file contains the import of the special module name CPmain, then
an class file with an entry point is produced as output. In this case the module body
becomes the method “main”, and begins with a hidden call which saves any command
line arguments so that they may be later accessed by calls to the ProgArgs library.

If the source file does not import CPmain then the module body becomes the “class
constructor” which is executed at the time that class is loaded on demand.

4.2 Unimplemented constructs

There are a small number of constructs that are unimplemented or restricted in this
release of the compiler. These are —

+ Module finalizers (unimplemented)
+ Procedure variables (restricted)
+ Passing of reference parameters (inexact semantics), see sidebox page

All of these features were implemented in a prototype version of the compiler.

Module finalizers are intended to be run prior to unloading the module code. There
is no facility for doing this on either of the gpcp target platforms.

Procedure types and variables for the JVM target were added in version 1.3.14.
with the same semantic restriction as on the .NET platform. Arbitrary procedures of
matching type may be assigned to procedure variables, and called in the usual way.
However assignment of procedure variables is only permitted if the two sides of the
assignment have the same type. That is, assignment of procedure values other than
literal procedures requires name compatibility, rather than the structural compatibility
specified in the language Report.

On the JVM platform arguments of certain types are passed by copying rather than
the semantically specified reference semantics. See the sidebox on page

4 SEMANTIC ISSUES 12

4.3 Additional Arithmetic Operators

The usual arithmetic operators DIV and MOD in Pascal-family languages have well
defined semantics that are different to the division and remainder operators of imple-
mentations of C-family languages. In Component Pascal the operators DIV and MOD
are defined as follows —
i1V j = i/
(¢ DIV j) x j+ (i MOD j) =i

where 4, j are integers, 7/ denotes real division, and | . | is the floor function.

Notice that DIV always rounds toward negative infinity unlike most C-language
implementations (which normally round toward zero). The Pascal operators are math-
ematically preferred, but in case the alternative semantics are required for compatibility
reasons, gpcp introduces alternatives. DIVO denotes integer division with rounding to-
ward zero, while REMO denotes the corresponding remainder operation.

i DIVO j = RTZ(i/5)

(i DIVO j) x j + (i MODO j) = i

where i, j are integers, ¢/ denotes real division, and RTZ(.) is the Round-to-Zero func-
tion.

Warning
Remember, if you use any of these non-standard operators your
program source will not be portable to other implementations of
Component Pascal.

4.4 Semantics of the WITH statement

The semantics of the WITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. In the code —

WITH x : TypeTi DO

(* guarded region *)
| x : TypeTj DO

(* guarded region *)
END;

the variable x is asserted to have the specified type throughout the so-called guarded
region. The base language guarantees that the type of the selected variable cannot
be “widened” in the guarded region, but might possibly be narrowed. In gpcp if the
guarded variable is a pointer type, the pointer value is treated as a constant. If the
guarded variable is a record type, then assignment to the fields is allowed, but an at-
tempt to change the variable type by an entire assignment is a semantic error.

4 SEMANTIC ISSUES 13

4.5 Extensible arrays: the vector types

From version 1.3 there is direct support for extensible array types. Values of these
vector types are dynamically allocated, and automatically extend their capacity when
an append operation is performed on an array that is already full. Vectors may be
declared to have any element type, and extend their length using amortized doubling.

In most circumstances when a linked list would otherwise have been used the vector
types are faster, more memory efficient, and allow memory-safe indexing. Elements
of vectors may be accessed using the familiar index syntax, with index values checked
against the active length of the array, rather than the array capacity.

Declaring vector types
Vectors are declared using the new syntax —

Type - .. - - other type constructors
| “VECTOR” “OF” Type.

Variables of vector type are not automatically allocated. They must be explicitly allo-
cated using a variant of the built-in NEW procedure which specifies the initial capacity.
Here is an example —

TYPE IntVec = VECTOR OF INTEGER;
VAR iVec : IntVec;

NEW (iVec, 16); (= Allocate vector with initial capacity 16 x)
Built-in procedures

There are two new procedures defined on the vector types. The first of these appends
a new value of the declared element type to an existing vector. The signature of the
procedure is —

PROCEDURE APPEND (v : VectorOfEType, e : EType) ;

As noted above, vectors are reference types, so that the first argument may be passed
by value. The vector will double its length if there is no further space left in the array.

There is another built-in procedure which allows for the active length of the vector
to be reduced. This has the effect of truncating the array at the given length. The
signature is —

PROCEDURE CUT (v : VectorOfEType, i : INTEGER);

It is a runtime error if the requested new length of the vector is less than zero, or is
greater than the current active length.

A new version of the standard built-in function LEN returns the active length of the
vector. There is no way of querying the current capacity of a vector datum.

As noted above, a new version of the standard built-in procedure NEW allocates
vectors of the specified initial capacity.

Assignment semantics

Vector values are references, so that an assignment of a vector value creates an alias
to the original r-value. If you really do have to make a value copy, here is a coding
pattern —

4 SEMANTIC ISSUES 14

VAR a,b : SomeVecType;

NEW (b, LEN(a)); (x bisbarely big enough *)

FOR i := 0 TO LEN(a)-1 DO APPEND (b, a[i]) END;
Note that in this case the value copy b will extend at the very next append operation,
since its initial capacity is the same as the active length of a. The active length of a
may have been as little as one half of its capacity.

4.6 Implementing foreign interfaces

Component Pascal types may extend classes from the underlying execution platform.
Types which extend JVM or .NET CLS classes may also declare that they implement
interfaceq’| from the CLS or JVM world. The syntax extension to access this feature
has BNF —

RecordDecl ::- “RECORD” [BaseType] [Fields] “END” ;™ .
BaseType i “U” Qualifiedldent { “+” Qualifiedldent } <17 .

The first qualified identifier, as in the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored. In
the case that interfaces are implemented, the base type may be left blank, or may be
explicitly set to ANYREC.

The semantics of type-assertions are also relaxed whenever a reference is asserted
to be of some interface type. For non-interface types many erroneous type-checks can
be detected at compile time. However, there are almost no cases where an assertion that
a dynamically typed object belongs to some interface type can be rejected at compile
time.

Thus, interface types may be used in Component Pascal. However, it is not possible
to define interface types using gpcp.

4.7 Unsigned byte type on .NET platform

The 8-bit type used in the .NET Common Language Specification (CLS) is an unsigned
type. If Component Pascal is to be a full consumer of CLS libraries then it must be
possible to declare variables and fields of such types in Component Pascal programs.
In order to facilitate this a new built-in type UBYTE has been introduced in version 1.2
of gpcp. Values of this type may be assigned to variables of larger integral types as
required. However, if values of this type are assigned to locations of the signed 8-bit
type BYTE a runtime range-check is required. Similarly if values of any signed type
are assigned to a location of unsigned byte type an explicit narrowing cast is required,
using the new built-in function USHORT\).

4.8 Runtime type descriptors

A new function since version 1.2 returns runtime type descriptors. This allows easy
access to the facilities of the system reflection libraries. The function is overloaded,
and has the following signatures —

PROCEDURE TYPEOF (typename) : RTS.NativeType;

PROCEDURE TYPEOF (IN s : anytype) : RTS.NativeType;

4By “interface” in this context, we mean fully abstract class.

4 SEMANTIC ISSUES 15

If the target is .NET, then NativeType is an alias for System.Type on the underlying
runtime. If the target is the JVM, then the return value type will be java.lang.Class.

The procedure with the first signature takes any type name as actual parameter.
The procedure with the second signature takes an actual parameter that is any variable
designator. If the type of the designator is statically known (perhaps because it denotes
an object of an inextensible type) then the compiler resolves the reference and no call
is needed to the runtime function java.lang.Object.getClass ().

4.9 Additional built-in functions

There are six additional built-in functions added to the implementation.

4.9.1 Functions MKSTR and BOX

One allows convenient access to the underlying native string object type. The signature
is—

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;
Note that it is never necessary to use MKSTR when passing a literal string to a formal
parameter of native string type. In the literal case the compiler does the conversion for
the programmer automatically.

Another handy function takes a record or array type, and makes a value copy onto
the heap, returning a pointer to the copy. The signature is —

PROCEDURE BOX (s : CP-type) : POINTER TO CP-type;

Here, CP-type is a Component Pascal-defined record, array or string type. The func-
tion copies the value so that modification of the boxed value does not affect the original
value. The function is particularly convenient for programs that manipulate character
data implemented as dynamically allocated arrays. Thus “BOX ("hello")” returns a
pointer to an array of characters of length 6, while “BOX (ptrl”~ + ptr27)” per-
forms a string concatenation and allocates a destination array of the required length. If
the function is applied to an array of fixed length the return value is an open array of the
same length. In the case of character arrays the use of the array “stringifier” mark “s”
on the argument of BOX boxes a copy of the array which is truncated at the position of
the “nul” character. Here is an example program fragment —

VAR str : ARRAY 16 OF CHAR;
ptr : POINTER TO ARRAY OF CHAR;

str := "Hello";

ptr := BOX(str); (x ptrpointsto an array of length 16 *)
ptr := BOX(strs$); (* ptrpoints to an array of length 6 x)

Without the BOX function, the construction of a value copy of an open array would
require the following tedious construction —

VAR a,b : POINTER TO ARRAY OF CHAR;

NEW (b, LEN(a));
FOR 1 := 0 TO LEN(a) DO b[i] := a[i] END;

Using the BOX function, the same effect is achieved by “b := BOX (a”) ;.

4 SEMANTIC ISSUES 16

4.9.2 Function USHORT

As of version 1.2 a new built-in unsigned byte type has been introduced, for confor-
mance with the .NET CLS. In order to coerce values of signed type to the new type a
new function USHORT (), analogous to the standard SHORT () function is also intro-
duced. This function has the signature —

PROCEDURE USHORT (s : AnyNumericType) : UBYTE;

It is a runtime error if the value of the parameter is not within the unsigned byte range.

4.9.3 Function TYPEOF

The fourth new built-in function, TYPEOF, allows programs to access the reflection fa-
cilities of the underlying platform. The function was described in the previous section.

4.9.4 Functions LSH and ROT

The logical-shift function LSH has the following signatures —

PROCEDURE LSH(arg : LONGINT; n : INTEGER) : LONGINT;
PROCEDURE LSH(arg : INTEGER; n : INTEGER) : INTEGER;

The return value is the shifted version of the first argument, and has the same type.
The second argument specifies the number of places that the first argument is to be
shifted. Positive values give a left shift. The shift value is range-checked, so that IN-
TEGER (LONGINT) shifts of greater than 31 (63, respectively) will return a correctly
sized zero value.
The generic bitwise-rotate function ROT has the following signature —

PROCEDURE ROT (arg : <anyint>; n : INTEGER) : <anyint>;

The return value is the rotated version of the first argument, and has the same type. The
arg input may be of any integer type, including LONGINT or any of the shorter integer
types.

The second argument specifies the number of places that the first argument is to
be rotated. Positive values give a left shift. The rotation is within the bitwidth of the
argument type. Thus if a contains the value 64 then ROT (a, 2) will return 1 if a is of
BYTE type, but returns 256 if a is of any of the larger integer types.

4.9.5 Changes for ASH

Prior to version 1.3.16 the builtin arithmetic shift function ASH only worked correctly
for the 32-bit integer type. From the current version onward two significant changes
have been made.

First, the function now has the following available signatures —

PROCEDURE ASH (arg : LONGINT; n : INTEGER) : LONGINT;
PROCEDURE ASH (arg : INTEGER; n : INTEGER) : INTEGER;

The return value is the shifted version of the first argument, and has the same type.

The second change is the behavior when shifts of greater than the data-word width
are attempted. Previously, shift amounts were applied modulo-wordwidth, which is the
usual semantic for machine instruction sets. The shift value is now range-checked, so
that INTEGER (LONGINT) shifts of magnitude greater than 31 (63, respectively) will
return a correctly sized zero (if arg is positive OR the shift is leftward) or negative-one
(if arg is negative AND the shift is rightward).

5 EXCEPTION HANDLING 17

4.10 Deprecated features and warnings

The use of procedure variables and of super-calls are deprecated. Both attract compile-
time warning messages. Warnings are also issued in the case of procedures that are not
exported, and are not called (or assigned as procedure variables) within their defining
module. This situation is usually an error arising from failure to mark the procedure
for export.

4.11 Program executable verification

Component Pascal is a type-safe language. Every correct program is type-safe in the
same sense that is guaranteed by the .NET virtual object system’s verifier. In principle
therefore, all output of gpcp should be verifiable.

You may force the Java runtime to invoke the verifier by running programs using
the —

java -verify ...

option, together with any other options required for the program.

Output might fail to verify if a manually constructed interface to a library does not
correspond to the internal metadata of the imported assembly. This potential problem
has largely gone away with the use of J2CPS.

4.12 Unchecked arithmetic

The JVM version of Component Pascal does not perform overflow-checking, but this
is the default on the .NET target. If you wish to write code that is portable between
the versions, you should explicitly turn off overflow checking for those procedures
that require this for semantic correctness. Overflow checking is turned off on a per-
procedure basis using a custom attribute.

The syntax of the custom attribute is a context sensitive marker that appears imme-
diately after the keyword BEGIN in a procedure or module body. The syntax is —

Body :- “BEGIN”[“[UNCHECKED_ARITHMETIC]”]
StatementSequence “END” identifier .

An example of the use of this construct, from the source of the compiler itself, is the
identifier hash function shown in Figure[5] This function performs a rotate-and-add
computation, in which bits are carried out of the sign bit back into the least significant
bit of the variable “tot”. Overflow checking must be turned off, in order to prevent
very long identifiers from crashing the compiler.

5 Exception Handling

Component Pascal does not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
built-in procedure introduced to facilitate this.

5.1 The RESCUE clause

Procedures, but not modules may include exactly one RESCUE clause, at the end of
the procedure body. This has syntax —

5 EXCEPTION HANDLING 18

PROCEDURE hashStr (IN str : ARRAY OF CHAR) : INTEGER;
VAR tot : INTEGER;
idx : INTEGER;
len : INTEGER;
BEGIN [UNCHECKED_ARITHMETIC] (* Turn off overflow checks «)

len := LEN(str$);
tot := 0;
FOR idx := 0 TO len-1 DO

INC (tot, tot);
IF tot < 0 THEN INC(tot) END;
INC (tot, ORD(str[idx]));
END;
RETURN tot MOD size;
END hashStr;

Figure 5: Code of the hash function

Important note on parameter passing semantics for the JVM

The JVM version of gpcp takes liberties with the precise semantics of parameter
passing almost everywhere. Actual parameters of unboxed?| value type that are
passed to reference formals are passed by copying. In the case of formal param-
eters of VAR mode, actual values of unboxed value type are copied in and copied
out. In the case of formal parameters of OUT mode the value is only copied out.
The current implementation method is necessary in order to obtain reasonable per-
formance on the JVM. The change will not affect the results of your program unless
you access the actual of a reference formal along two paths (either by having two
reference formals sharing the same actual argument value, or accessing a static vari-
able directly and through a parameter). You should not write programs that do this!
You might also care to know that with this change, the performance of code is good
if you have only one such copied parameter, but becomes poor if you have more
than one in any frequently called procedure.

In contrast, on the .NET platform unboxed reference parameters are only passed
inexactly if they are non-locally accessed from within a nested procedure.

“Unboxed value types on the JVM platform are the built-in standard types such as CHAR and INTE-
GER, together with the pointer types. Structures and arrays are always boxed at runtime in the JVM, and
are not affected by this semantic inexactness.

ProcBody ::- “BEGIN” Statements
[“RESCUE” “ (” ident *“)” Statements]
“END” ident.

The identifier introduced in the parentheses is of type RTS.NativeException, and
must have a name that is distinct from every other identifier in the local scope.

If any exception is thrown in the body of the procedure, or if any exception is
unhandled in a procedure called from this procedure, then the rescue clause is entered
with the exception object in the named local variable. This variable is read-only within
the rescue clause, and is not known in the rest of the procedure body.

6 FACILITIES OF THE CP RUNTIME SYSTEM 19

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly return
a type-correct value, or explicitly throw another exception.

5.2 The THROW statement

Code may throw an exception by using the built-in procedure THROW. This procedure
has two signatures —

PROCEDURE THROW (x : RTS.NativeException);

PROCEDURE THROW (x : RTS.NativeString);
These may be used anywhere in the program. The first is useful for rethrowing an
exception from within a rescue clause. The second of these may be passed a literal
string, without requiring a call of MKSTR() since the the compiler will automatically
coerce literal strings to formals of native string type. This call will throw an exception
object of System.Exception type, with the given string as embedded information. If

Warning
Remember, if you use any of these non-standard facilties for ex-
ception handling your program source will not be portable to
other implementations of Component Pascal.

you want to create an exception object to abort program execution with a meaningful
string, you may also use the library function

RTS.Throw (msg : ARRAY OF CHAR);
Exceptions thrown by this library function can be caught by a RESCUE clause.

6 Facilities of the CP Runtime System

6.1 Supplied libraries
This release has a small number of libraries supplied. These are —
+ Console writes strings and numbers to the console
* StdIn reads characters and whole lines from the console
+ Error this library writes strings and number to the error stream
+ ProgArgs provides access to the command line arguments, if any
x GPText a basic library for handling text formatting
x GPFiles defines the supertype of GPBinfFiles. FILE and GPTextFiles.FILE
* GPBinFiles reading and writing binary files
* GPTextFiles reading and writing text files

* RealStr formatting real numbers: based on the ISO-Modula-2 library

6 FACILITIES OF THE CP RUNTIME SYSTEM 20

* RTS access to the facilities of the runtime system
* StringLib string library, based on the ISO-Modula-2 library
* SYSTEM some unsafe, low-level facilites.

For the most part these libraries are the ones that were required to bootstrap the
compiler. More will come later.

6.2 The runtime system (RTS)

The runtime system provides a variety of low-level access facilities. The source file for
this module, “RTS.cp”, is not really the source. This file is a dummy, as is denoted
by the context-sensitive mark SYSTEM appearing before the keyword MODULE. On
the JVM target the “module” is implemented in the file “RTS. java”. Other system
modules “CcpJ” and “cPJrts” are known to the compiler and do not have program
accessible identifiers. On the .NET target all such system “modules” are implemented
in the C# file named “RTS. cs”, and at runtime are found in the assembly “RTS.d11”.

A sample from the “source” of RTS is shown in Figure[6] The four character de-
SfaultTarget string will hold “net” when running on the . NET platform, and “jvm” when
running under the Java Runtime Environment. The word SYSTEM in the first line of
the definition is a context sensitive mark, rather than a reserved word. This means that
the word may be used as an identifier elsewhere in the program. The mark simply
indicates that the resources of this module are actually found in the runtime system,
or are directly known to the compiler. Console, Error and ProgArgs are also SYSTEM
modules.

The function procedures TypeName, CharAtlndex and Length are new in version
1.3.12.

6.3 The ProgArgs library

The ProgArgs library provides access to the command line argument, if any. From
gpcep release 1.3 it also provides access to the process environment. This is a system
library, with the following public interface —

SYSTEM MODULE ProgArgs;
PROCEDURE ArgNumber= () : INTEGER;
PROCEDURE GetArgx* (num : INTEGER; OUT arg : ARRAY OF CHAR);
PROCEDURE GetEnvVarx (IN str : ARRAY OF CHAR;
OUT val : ARRAY OF CHAR);
END ProgArgs.

Note carefully that on the .NET platform GetEnvVar fetches an environment vari-
able, or an empty string. On the JVM platform the use of environment variables is
deprecated, and the procedure fetches the corresponding Property String. Such prop-
erty strings are passed to the underlying Java process at startup, using options of the
form —

—Dname=value

6 FACILITIES OF THE CP RUNTIME SYSTEM 21

SYSTEM MODULE RTS;
TYPE CharOpenx POINTER TO ARRAY OF CHAR;
CharVectorx = VECTOR OF CHAR;

TYPE NativeTypex = POINTER TO RECORD END;
NativeObjectx POINTER TO RECORD END;
NativeStringx POINTER TO RECORD END;
NativeExceptionx = POINTER TO RECORD END;

VAR
defaultTarget— : ARRAY 4 OF CHAR;
eol- : CharOpen; (x OS-dependent EOL string *)
fltNegInfinity- : SHORTREAL;
dblNegInfinity- : REAL;
fltPosInfinity- : SHORTREAL;
dblPosInfinity- : REAL;

PROCEDURE TypeName (x : NativeType) : CharOpen;

(* Get type name in target conventions)

PROCEDURE CharAtIndex (s : NativeString; i : INTEGER) : CHAR;
(* Get char at index postion i in string s *)

PROCEDURE Length(s : NativeString) : INTEGER;
(* Get length of string s x)

PROCEDURE getStr(x : NativeException) : CharOpen;
(* Get error message from Exception x *)

PROCEDURE StrToRealx* (IN s : ARRAY OF CHAR;
OUT r : REAL;
OUT ok : BOOLEAN) ;

(* Parse array into an IEEE double REAL ~)

PROCEDURE StrToIntx (IN s : ARRAY OF CHAR;
OouT i : INTEGER;
OUT ok : BOOLEAN) ;

(* Parse an array into a CP INTEGER *)

PROCEDURE StrToLongx* (IN s : ARRAY OF CHAR;
OUT i : LONGINT;
OUT ok : BOOLEAN) ;

(* Parse an array into a CP LONGINT x)

R continues ...

Figure 6: Source of the RTS pseudo-module

6 FACILITIES OF THE CP RUNTIME SYSTEM 22

RTS continuation ...
PROCEDURE RealToStrx*(r : REAL;
OUT s : ARRAY OF CHAR);
(* Decode a CP REAL into an array)

PROCEDURE IntToStr=* (i : INTEGER;
OUT s : ARRAY OF CHAR);
(« Decode a CP INTEGER into an array)
PROCEDURE LongToStrx (i : LONGINT;
OUT s : ARRAY OF CHAR);
(* Decode a CP INTEGER into an array *)

PROCEDURE realToLongBits* (r : REAL) : LONGINT;
(* Convert IEEE double to longint with same bit pattern *)

PROCEDURE longBitsToRealx (1 : LONGINT) : REAL;
(* Convert IEEE double to a longint with same bit pattern)

PROCEDURE hilInt=* (1 : LONGINT) : INTEGER;
(* Get hi-significant word of long integer *)

PROCEDURE loInt=* (1 : LONGINT) : INTEGER;
(* Get lo-significant word of long integer *)

PROCEDURE Throw* (IN s : ARRAY OF CHAR); (% Abort execution *)
PROCEDURE GetMillisx () : LONGINT; (* Get time in milliseconds *)
PROCEDURE ClassMarkerx (o : ANYPTR); (* Write class name *)
PROCEDURE GetDateStringx (OUT str : ARRAY OF CHAR);

(* Get a date string in some native format *)
END RTS.

Figure 7: Source of the RTS pseudo-module, continued

6.4 The RealStr library

The RealStr library is a port to Component Pascal of the ISO-Modula-2 real number
formatting library. The interface to the library is shown in Figure|[§]

The library contains procedures to transform real number values into fixed format
strings, floating format strings and the so-called “engineering” format in which expo-
nents are always a multiple of three. For the string parser, StrToReal, the recognized
format is given by the regular expression —

Number - [“+7|“-"1dig {dig} [“.” {dig} 1 [“E” [“+” | “-"]1dig {dig}] .

where dig denotes a decimal digit.

The RealStr library will exactly round trip numbers via RealToFloat and StrloReal,
provided a full 17 significant figures are specified for RealToFloat. So far as possible
the results of using module RealStr should be identical on the two platforms.

6 FACILITIES OF THE CP RUNTIME SYSTEM 23

MODULE RealStr;

(* Ignores any leading spaces in str. If the subsequent characters in str are in the *)
(format of a signed real number, assigns a corresponding value to real. Argument *)
(* res reports whether conversion was successful. *)
PROCEDURE StrToRealx (str : ARRAY OF CHAR;
OUT real : REAL;
OUT res : BOOLEAN) ;
(* Converts the value of real to floating-point string form, with sigFigs significant *)
(* digits and copies the possibly truncated result to str. *)
PROCEDURE RealToFloatx* (real : REAL;

sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to floating-point string form, with sigFigs significant *)

(* digits, and copies the possibly truncated result to str. The number is scaled with one *)

(* to three whole-number digits and an exponent that is a multiple of three. *)
PROCEDURE RealToEng=* (real : REAL;

sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(« Converts the value of real to fixed-point string form, rounded to the given place *)
(* relative to the decimal point, and copies the result to str. %)
PROCEDURE RealToFixedx (real : REAL;
place : INTEGER; (x num. of frac. places *)
OUT str : ARRAY OF CHAR);

(* Converts the value of real as RealToFixed if the sign and magnitude can be shown — x)
(* within the capacity of str, or otherwise as RealToFloat, and copies the possibly *)
(* truncated result to str. The format is implementation-defined. *)

PROCEDURE RealToStrx* (real: REAL; OUT str: ARRAY OF CHAR);
END RealStr.

Figure 8: Interface of the RealStr library

6.5 The StringLib library

The StringLib library reproduces the functionality of the ISO Modula-2 string library,
although the implementation has little similarity. The publicly accessible interface to
the library is shown in Figure 9]

The library contains the expected procedures for assigning, extracting, replacing,
deleting, concatenating and searching strings. As well, each of the procedures that
mutates a string value has a corresponding predicate function that tests if the operation
can be carried out exactly. This allows a guarded style of coding.

None of these routines raises program exceptions, but have sensible behaviour in
the case that the incoming arguments do not allow correct completion. For example,
in the case of the Assign procedure, if the source string is too long for the supplied
destination the result is truncated to fit. Similarly, for the Extract procedure the length

6 FACILITIES OF THE CP RUNTIME SYSTEM 24

MODULE StringLib; (* from GPM module StdStrings.mod *)

PROCEDURE CanAssignAllx (sLen : INTEGER;

IN dest : ARRAY OF CHAR) : BOOLEAN;
(* Check if an assignment is possible without truncation. *)
PROCEDURE Assignx (IN src : ARRAY OF CHAR;
OUT dst : ARRAY OF CHAR);
(* Assign as much as possible of src to dst, with terminating nul %)

PROCEDURE CanExtractAll* (len : INTEGER;
sIx : INTEGER;
num : INTEGER;
OUT dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if extraction of "num” chars starting at index slx is possible. *)

PROCEDURE Extractx (IN src : ARRAY OF CHAR;
sIx : INTEGER;
num : INTEGER;
OUT dst : ARRAY OF CHAR);
(* Extract num characters starting from sIx. Result is truncated if there *)

(* are fewer characters left, or the destination is too short. *)
PROCEDURE CanDeleteAllx (len,sIx,num : INTEGER) : BOOLEAN;
(* Check if num chars may be deleted starting from sIx. len is the source length *)

PROCEDURE Deletex (VAR str : ARRAY OF CHAR;
sIx : INTEGER;
num : INTEGER) ;
(* Delete num chars starting from sIx. Less are deleted if there are less num after sIx.)

PROCEDURE CanInsertAll« (sLen : INTEGER;
sIdx : INTEGER;

VAR dest : ARRAY OF CHAR) : BOOLEAN;
(* Check if sLen chars may be inserted into dest starting from sldx. *)
PROCEDURE Insertx (IN src : ARRAY OF CHAR;

sIx : INTEGER;
VAR dst : ARRAY OF CHAR);
(* Insert src string into dst starting from sIx. Less chars are inserted if there is *)
(* insufficient space in dst. dst is unchanged if sIx is beyond the end of dst. *)

PROCEDURE CanReplaceAllx (len : INTEGER;
sIx : INTEGER;
VAR dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if len chars may be replaced in dst starting from sIx. *)
[StringLib continues .. |

Figure 9: Interface to the StringLib library

6 FACILITIES OF THE CP RUNTIME SYSTEM 25

StringLib continuation ...
PROCEDURE Replacex (IN src : ARRAY OF CHAR;
sIx : INTEGER;
VAR dst : ARRAY OF CHAR);
(* Insert the characters of src into dst starting from sIx. Less chars are replaced if the
(* initial length of dst is insufficient. The string length of dst is unchanged. *)

*

PROCEDURE CanAppendAllx (len : INTEGER;

VAR dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if len characters may be appended to dst *)

PROCEDURE Appendx* (src : ARRAY OF CHAR;
VAR dst : ARRAY OF CHAR);
(* Append the chars of src string onto dst. Less characters are appended if the *)
(* length of the destination string is insufficient. *)

PROCEDURE Capitalizex (VAR str : ARRAY OF CHAR);

PROCEDURE FindNext* (IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;
bIx : INTEGER; (* Begin index x)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);
(* Find the first occurrence of the pattern pat in str starting the search from blx
(* If no match is found fnd is false and pos is blx. Empty patterns match everywhere.

*

*

PROCEDURE FindPrevs (IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;
bIx : INTEGER; (x Begin index *)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);
(* Find the previous occurrence of the pattern pat in str starting the search from bIx.
(* If no match is found fnd is false and pos is blx. Empty patterns match everywhere.

*

*

PROCEDURE FindDiff« (IN strl : ARRAY OF CHAR;
IN str2 : ARRAY OF CHAR;
OUT diff : BOOLEAN;
OUT dPos : INTEGER);
(* Find the index of the first char of difference between the two input strings. *)
(* If the strings are identical diff is false, and dPos is zero. *)

END StringLib.

Figure 10: Interface to the StringLib library

of the extracted string is the least of: (i) the requested character count, (ii) the number
of characters left in the source string, and (iii) the capacity of the destination array.

7 FOREIGN LANGUAGE INTERFACE 26

6.6 The SYSTEM facilities

The SYSTEM module consists of three procedures. It must be explicitly imported, and
programs that import it will only compile if the command line argument “/unsafe”
is in effect and the target is .NET. Programs which use any of these facilities will
be unverifiable. Furthermore, the careless use of these facilities may compromise the
correctness of the garbage collector. The module is useful for diagnostic testing, but
should never be used in deployed code.
The procedures are —

PROCEDURE ADR(IN obj : any type) : INTEGER;

PROCEDURE GET (IN adr : INTEGER; OUT dst : any basic type) ;

PROCEDURE PUT (IN adr : INTEGER; IN val : any basic type) ;

There is a demonstration program named \examples\hello\testadr.cp This
example demonstrates some of the capabilities of the library. Study the results, you may
find them surprising. Note, for example, that ADR(arr) is not equal to ADR(arr[0]).

6.7 The StdIn library

In version 1.3 a new library is supplied that provides primitives for reading single
characters and whole lines from the standard input stream. This stream is connected
by default to the machine console, but may be redirected using the facilities of the
underlying platform libraries.

This library has very simple functionality, described by the foreign module shown
in Figure[T1] In the first release the predicate function More always returns the TRUE

SYSTEM MODULE StdIn;
(* Read a line of text, discarding new-line)
PROCEDURE ReadLn* (OUT arr : ARRAY OF CHAR);
PROCEDURE SkipLnx () ; (* Discard remainer of line *)
PROCEDURE Readx* (OUT ch : CHAR); (* Fetch next character)
PROCEDURE Morex () : BOOLEAN; (* Return TRUE in gpcp v1.3! x)
END StdIn.

Figure 11: Source of the StdIn pseudo-module

value. The team will restore the functionality when we figure out a way of making the
behaviour the same on the two execution platforms.

7 Foreign Language Interface

7.1 Accessing the underlying native types

As seen in Figure [6] the RTS module defines four type aliases. The binding of these
types to the native platform types is determined dynamically, at compile time. Thus, the
underlying types are accessible without any other import other than RTS. At compiler-
runtime the compiler queries the target flag, or takes the default target value if there is
no target command option.

7 FOREIGN LANGUAGE INTERFACE 27

If the target is “net” then NativeObject, NativeString and NativeException will be
the CLR types System.Object, System.String and System.Exception respectively.

If the target is “jvm” then NativeObject, NativeString and NativeException will be
the Java types java.lang.Object, java.lang.String and java.lang. Exception respectively.

In any case, literal strings may be implicitly coerced to either the native string type,
or to the native object type. This saves a lot of clutter in code that interfaces to foreign
libraries. However, if the value of a charater array variable needs to be transformed to
a native string, the non-standard built-in function —

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

must be used. See the appendix for an extended example of using these facilities for
working with native string types.

7.2 Compiling dummy definition modules

As a convenience during bootstrapping, the compiler has been enhanced so as to allow
the construction of metainformation files for foreign language libraries. Such modules
must be compiled with the “-~special” option.

Foreign language interfaces are denoted by the context sensitive marks FOREIGN
or SYSTEM preceding the keyword MODULE at the start of the file. Such “dummy”
modules do not contain the code of the foreign language facilities, but simply define
the interface to those facilities. Such modules must be compiled with the “~special”
option. The system marker has special meaning in the . NET platform, but has the same
semantics as foreign in the JVM platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

+ Modules can be given an explicit external name

* Procedures can be given an explicit external name
+ Features with “protected” scope may be defined

+ Static features of classes may be defined

+ Escaped identifiers may be defined

+ Interface types may be defined

* Overloaded names may be given aliases

+ Constructors may be given an alias

A module declaration of the form —
MODULE Foo["PackageName"];

declares that this module will be found in JVM assembly “CP.PackageName” where
the it PackageName is a possibly dotted name of the form “a.b ...” or “a/b ...".
It is not necessary to use this mechanism if you write the foreign module so that it has
the default name as described in Section[3.4

A procedure declaration of the form —

PROCEDURE (x : T)BarIIx["Bar"](i,j : INTEGER);

7 FOREIGN LANGUAGE INTERFACE 28

declares that this type-bound procedure has the external name “Bar” and the internal
(CP) name “BarII”. This mechanism allows overloaded names in the CLS to be given
non-overloaded aliases in CP.

The mark “!” is used to declare that a foreign name has protected scope. The mark

w9

is placed in the same position in a declaration as the standard export markers “»” and
If a name clashes with a Component Pascal keyword, it should be defined using the
back-quote escape, as described on page
Here is an example of the syntax that is required to define a foreign interface type.

TYPE Foox = POINTER TO INTERFACE RECORD (=* always empty ») END;

The keyword INTERFACE is reserved. Such types cannot declare any instance fields
in the record, nor can they define type-bound procedures which are not declared AB-
STRACT.

Finally, constructors must be declared with the special name “<init>". Declaring
a constructor is not necessary if only the no-arg constructor is required, since NEW(obj)
works in this case as for all other types in Component Pascal (see Section [8.4]for more
detail). If access to constructors with arguments is required, then these may be given
a Component Pascal alias, and are marked as constructors by using the magic explicit
name. For the “~target=net” version, the magic name is “.ctor”.

7.3 Accessing Static Features of Foreign Classes

If a class has been imported from a foreign definition, and the class has static members,
these may be accessed by means of a semantic extension to the designator grammar.
Normally, the syntactic construct —

Qualifiedldent {Selector}
is in error if the qualified identifier resolves to a type-identifier. However there are two
exceptional cases where this is legal in gpcp. If a designator begins —

Typeldentifier “.” Identifier ...
and the following is true —

The type identifier resolves to an imported, foreign type, and either
the identifier is a static field or constant of the type, or
the identifier is a static method of the named type

then this is a legal reference to the named static feature of the type.

In order to define such constructs in the syntax of dummy definitions the follow-
ing productions are added to the record syntax. Note that these extensions are only
recognised if the module is compiled with the “~special” command-line option.

Record - “RECORD” [“(” Typeld) | { FieldList}

[“sTATIC” {StatFeature}] “END”.
StatFeature - ProcHeading | StatConst | StatField .
StatConst - identifier “=" ConstExpression .
StatField - identifier ““:” Typeld .

All undefined syntactic categories in the fragment have the same meaning as in the
unmodified Component Pascal syntax. In particular, procedure headings have the same
syntax as elsewhere in the language.

8 CREATING AND USING FOREIGN DEFINITION MODULES 29

8 Creating and Using Foreign Definition Modules

This Section is only of relevance if you plan to write your own foreign definition mod-
ules. For most users the information in the previous section on the usage of these
facilities will be sufficient.

Hint:

This section is included for mainly historical reasons. The need
to write foreign definition modules has significantly decreased
with the availablity of the PeZ7oCps and J2CPS tools. It is usu-
ally easier to write the foreign language code, use the tool to pro-
duce the symbol file, and Browse to produce a human-readable
version.

An exception occurs when the same module is required for both
platforms. In that case it may still be simpler to write a foreign
module, and then separately implement the code in Java and C#

to match the shared definition.

8.1 Syntax of Foreign Definitions

The syntax of foreign definition is shown in Figure[I2} Unless otherwise defined here,
the meanings of syntactic-category symbols is the same as in the Component Pascal

Report.

GPModule
ForeignMod

DeclSeq

ProcHeading
MethodHeading

TypeDecl
Type

StaticDecl
Attributes
Supers

Module | ForeignMod .

(“FOREIGN” | “SYSTEM”) “MODULE” ident [string 1 “;”
ImportList DeclSeq “END” ident “.” .

{ “coNsT” {ConstDecl “;”"}

“1YPE” {TypeDecl “; '}

“vaRr” {VarDecl “;”}}

{ ProcHeading ““;” | MethodHeading ““;” }
“PROCEDURE” IdentDef [“[” string “1”’] [FormalPars] .
“PROCEDURE” Receiver IdentDef [“[” string “17]
[FormalPars] [,” “NEW”]
[“,” (“ABSTRACT” | “EMPTY”
IdentDef “=" Type .
[“POINTER” “TO”] [Attributes] “RECORD” [Supers]
FieldList {*;” FieldList }

[“sTATIC” StaticDecl {*;” StaticDecl}] “END”

- - Other types as in the Report .

IdList “:” Type | IdentDef “=" ConstExpr | ProcHeading .
“ABSTRACT” | “EXTENSIBLE” | “INTERFACE” .

“(” [Qualident] {“+”Qualident}*)” .

“EXTENSIBLE”)].

Figure 12: Syntax of foreign modules

The syntax begins with the context sensitive mark FOREIGN or SYSTEM. On the
.NET platform the system marker indicates that the code will be found in the runtime

8 CREATING AND USING FOREIGN DEFINITION MODULES 30

system assembly. In the JVM, where each class file contains a single class, the marker
has the same semantic effect as the foreign marker.

8.2 Explicit package or namespace names

The way in which runtime names are generated from module names was described in
Section[3.4] In the case of the JVM we have the following correspondence —

Component Pascal Name JVM Name

MODULE ModNm; CP .ModNm /I package name
TYPE Cls = RECORD...END; CP .ModNm.ModNm_Cls
VAR varNm : Cls; CP .ModNm.ModNm.varNm
PROCEDURE ProcNm() ; CP .ModNm.ModNm.ProcNm ()
PROCEDURE (t:Cls)MthNm(); CP.ModNm.Cls.MthNm /()

END ModNm.

Notice that in the JVM there are no features that are defined outside of classes, so
that the static features varNm and ProcNm are considered at runtime to belong to an
implicit static class with the same name as the module name. However, so far as an
importing Component Pascal program is concerned, these features will be accessed by
the familiar ModuleName.memberName syntax.

Component Pascal Name NET CLS Name

MODULE ModNm; [ModNm]ModNm // namespace name
TYPE Cls = RECORD...END; [ModNm]ModNm.Cls
VAR varNm : Cls; [ModNm] ModNm.ModNm: : varNm
PROCEDURE ProcNm() ; [ModNm] ModNm.ModNm: :ProcNm ()
PROCEDURE (t:Cls)MthNm() ; [ModNm]ModNm.Cls: :MthNm ()

END ModNm.

In the virtual object system of . NET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in either Java or in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versions of gpcp, and
implement a foreign module on each underlying platform. If on the other hand you are
planning to match a foreign definition to an existing library written in Java or C#, then
you must override this default naming scheme.

The syntax —

“FOREIGN” “MODULE” ident “[” string “1” “;”
allows an arbitrary package or namespace name to be defined. For example, in order to
access the facilities of the package java.lang.Reflect a foreign module might
begin

FOREIGN MODULE java_lang_Reflect["java.lang.Reflect"];
Similarly, in order to access the facilities of the namespace System.Reflect in the as-
sembly mscorlib a foreign module might begin

FOREIGN MODULE mscorlib_System_Reflect

["[mscorlib]System.Reflect"];

Note that the form of the literal string is different on the two platforms, and thus
any such foreign modules will be specific to a particular platform. Notice also that
there is no mechanism to explicitly give a name to an implicit static class.

8 CREATING AND USING FOREIGN DEFINITION MODULES 31

8.3 Dealing with overloaded names

Each of the underlying platforms allows name overloading for methods. This feature is
deliberately not permitted in Component Pascal. Nevertheless, it is necessary to gain
access to library methods that have overloaded names. The option of using explicit
external method names facilitates this. Suppose we have two methods, both of which
are named Add (), one with a single integer parameter, and the other with two. We
might define these as follows in a foreign definition.

PROCEDURE (this : Cls)AddI«["Add"] (I : INTEGER), NEW;

PROCEDURE (this : Cls)AddIIs["Add"](I,J : INTEGER), NEW;
Within the importing Component Pascal program the two names are distinct, but the
program executable will correctly refer to the underlying overloaded methods. This
manually specified name-mangling is rather awkward, particularly in the case of pa-
rameters of object types.

Since gpcp release 1.1 users are able to access the unmangled names of overloaded
foreign methods directly. The PeToCps and J2CPS tools create symbol files that have
overloaded names, and the compiler will match calls to the intended method. Because
this is a language extension, the compiler is strict about matching calls to methods
in the presence of automatic type coercions. If more than one method matches when
taking into account all legal coercions, gpcp will reject the program and require the
user to specify the intended coercions of the actual parameters.

8.4 Interfacing to constructors

If a foreign class has a “no-arg” constructor, then this will be implicitly called when-
ever an object is created by the use of the standard procedure NEW. However if it is
necessary to access constructors with arguments, then it is possible to define an alias
for the constructor in a foreign module. In every case the constructor will be accessed
by means of a static, value returning function that returns an object of the constructed
class. The fact that this is a constructor must be made known to gpcp since the way
in which these methods are called differs from other methods. On each underlying
platform there is a “magic” name that is used for calling a constructor. On the JVM the
name is “<init>", while on .NET the name is “. ctor”. These two strings are used as
the explicit string that defines such a procedure in the foreign definition. An example
of an interface to a constructor with arguments, in the syntax used by the Browse tool,
might be —
PROCEDURE Init=*(width,height : INTEGER) : Rect, CONSTRUCTOR;

The identifier “CONSTRUCTOR” is not a reserved word, but a context sensitive mark that
may be used as an ordinary identifier elsewhere in the program.

Note that this declaration would normally appear in the static part of the record
defining the class Rect. Calls to this procedure in a Component Pascal program, such
as —

recl := F.Rect.Init (25,17);
would, depending on the target platform, translate into a call to one or the other of —

namespaceName .Rect : : .ctor (int32, int32)
packageName .Rect .<init> (II)
Of course, if you extend a foreign class that does not have a public no-arg construc-
tor, then you will not be able to construct values of your own type using NEW, since
this implicitly calls the no-arg constructor of its super-type. In this case, it is necessary

8 CREATING AND USING FOREIGN DEFINITION MODULES 32

to define a new constructor signature for your extended type. From gpcp release 1.2
there are two ways to do this. If the desired constructor has the same signature as the
constructor of the supertype, then the first method may be used. In the case of the

example above, the required syntax is shown in the following fragment —
TYPE MyRect* = POINTER TO RECORD (Mod.Rect) ... END;

PROCEDURE Init«(w,h : INTEGER) : MyRect, CONSTRUCTOR;
The constructor does not define a code body, and simply passes its arguments to the

super-type constructor with matching signature.

The new syntax in gpcp version 1.2 is considerably more flexible. The Component
Pascal constructor is not required to have the same signature as the constructor of the
super-type. An example of the syntax defining another constructor for the extended
type defined above is —

PROCEDURE MkMyRect (Formals) : MyRect, BASE (actuals) ;
(%= Local-declarations *)
BEGIN
(* Constructor body code)
RETURN SELF;
END MkMyRect;
in the code the formal and actual parameter lists have been left un-elaborated.

The identifier “BASE” is a not a reserved word, but is a context sensitive mark. Of
all publicly available constructors for the super-type it specifies a call of the one with
signature matching the types of the “actuals” argument list. This super-type constructor
will be called as the first action of the constructor, before the new fields of the derived
object are initialized. Within the body of the constructor the object under construction
is denoted by the identifier “SELF”. The constructor must return this object along every
terminating path of the body. It is an error if the actual parameter expression types in
the BASE super-call do not choose a unique super-type constructor.

8.5 Declaring static features of classes

Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on the JVM platform the pointer form be always
used, as a helpful reminder to the user that at runtime the objects will be dynamically
allocated. On the .NET platform value classes should be declared as plain records,
with no explicit base type. On both platforms array types should be declared as point-
ers to arrays, again reminding the user that all arrays are dynamically (and explicitly)
allocated.

In order to access static features of foreign classes, the syntax extension of records
given in Figure [[2] must be used. In the optional static section of a record declaration
we may define constants, static fields and static (i.e. non type-bound) procedures.

We may consider the following example —

CP Foreign Definition Component Pascal Usage
FOREIGN MODULE ModNm;
TYPE Cls = ModNm.Cls (* class name *)
POINTER TO RECORD
STATIC
statVarx : CHAR; ModNm.Cls.statVar
PROCEDURE StatProc () ; ModNm.Cls.StatProc ()
END;
END ModNm.

9 INSTALLING AND TRYING THE COMPILER 33

In this example we select the static member by qualifying the designator by the type-
name of the class.

Type-bound methods will be defined lexically outside of the record declaration in
the normal Component Pascal way, remembering that only the heading is required.
On the .NET platform the distinction between virtual and instance methods is made
automatically. Instance methods are NEW but not EXTENSIBLE. On the JVM platform
the possibility of optimizing the calls to such methods is left to the JIT to determine.

Note that the foreign modules which arise from C# on the .NET platform or are
written in Java can never have static features outside of classes. If you are writing
the foreign module yourself you may use the default class naming scheme described
in Section [3.4] However if you are matching an existing package, you will need to
use the explicit name override described earlier in this Section. This allows you to
control the package name, but does not allow you to name an implicit static class for
static features. Therefore you will need to use the mechanisms of this sub-section if
the package contains any static features.

8.6 Automatic module renaming

Programs written in C# that contain a single class definition only are often created in
files that take their name from the name of the class. If you try to match this same
structure in Component Pascal, you run into a small difficulty on the .NET platform.
Suppose you want to export a class Rename from a module named Rename. In this
case the external class name in .NET will be “[Rename] Rename.Rename”, and this
name will clash with the name of the “synthetic static class”. In this circumstance gpcp
will automatically rename the static class, by pre-pending two underscore characters.
If the module with the renamed class is imported, gpcp will find the renamed symbol
file. In both contexts gpcp will issue a warning that the renaming is taking place —
C:\gpcp\work> gpcp Rename.cp UseRename.cp
1 MODULE Rename;
Kok kk ——————— "~ Warning: Default static class has name clash
*%%% Renaming static class to <__Rename>
#gpcp: <Rename> No errors, and one warning
2 IMPORT Rename, CPmain;
Kxkk ————————— " Warning: Looking for a auto-renamed module
Axk KK ————————— " Looking for module "Rename" in <__Rename.cps>
#gpcp: <UseRename> No errors, and one warning

9 Installing and Trying the Compiler

9.1 Installation

The compiler is packaged in a single zip archive. Complete instructions for installing
and trying out the compiler are in the separate document “Getting Started with GPCP”.

Figure |13|is the complete folder hierarchy of the installed compiler. The six first-
level subdirectories of the distribution are

+ bin — the binary files of the compiler
* CP — the class file tree of the tools and libraries

* docs — the documentation, including this file

9 INSTALLING AND TRYING THE COMPILER 34

. gpcp-IVIM
J bin
y CP
, docs
) J2CPS
; WhMexamples
, applet3
. hello
J libs
| JwemSystern
| SOUrce
| gpcp
. csharp
| java
| PeToCps
| J2CPS
. libs
| cpascal
| csharp

| java

Figure 13: Distribution File Tree

x JVMexamples — some example programs
+ libs — contains the simple library files

* source — the source files

9.1.1 Installation on Windows

The compiler and runtime need to able to find the executable files, the symbol files
of the libraries, and the class files of the libraries. By default all of these are accessed
relative to the root directory of the installation. Thus only a single environment variable
needs to be set. This is “JROOT”.
In a typical Windows installation the installation directory might be C : \gpcp—-JVM\.

In this case the environment variable will be set by the command —

set JROOT=C:\gpcp-JVM
and the command files added to the executable path —

set PATH=%PATHS%; $JROOT%$\bin
The cprun command passes the library path to the Java execution as a property. The
symbol file resolver will seek symbol files using the path string —

10 GPCP COMMUNITY 35

CPSYM=.; $JROOT%$\1ibs; $JROOT%\1ibs\JvmSystem The class path will
start in the local directory, then go to JROOT, then the standard Java libraries.

9.1.2 Installation on UNIX
9.1.3 Class-file loading

The “cp” directory is the root of the gpcp-created class-file tree. This directory contains
a subdirectory for each module of the system. There are almost 250 class files in the
tree, in the initial distribution. However, when you run programs, class files in the local
class file directory take precedence over those in the CPROOT directory.

The “1ibs” directory contains the symbol files for the Component Pascal libraries.
There are two subdirectories under “1ibs”. The “Htm1BrowseFiles” directory con-
tains the html files containing the hyperlinked version of the symbol files for the Java
libraries in Component Pascal format. The “JvmSystem” directory contains the sym-
bols files to interface to the Java runtime.

10 GPCP Community

The definitive version of gpcp is maintained on the CodePlex repository. http://
gpcp.codeplex.com/. The site has discussion, issue and download pages, and
also has the source code revision control system repository.

Posting to the Mail Group

There is a discussion group for users of gpcp. You may subscribe by sending an email
to GPCP-subscribe @yahoogroups.com. The development team monitor traffic on the
group, and will post update messages to the group.

http://gpcp.codeplex.com/
http://gpcp.codeplex.com/
mailto:GPCP-subscribe@yahoogroups.com

10 GPCP COMMUNITY 36

10.1 Change summary
Changes from 1.3.15

The following corrections and changes are included in the 1.3.16 release.

*

Fixed a bug with builtin arithmetic shift function ASH when applied to 64-bit
operands.

Added new builtin logical shift function LSH. This function applies to 32 and
64-bit integers. As for the standard ASH function, positive shifts are leftward.

The semantics of both shift operations have been changed. Shift amount is now
range checked, and shifts of greater than or equal to data-word width return zero
or minus one as required.

Added new builtin rotate function ROT. This generic function can rotate any
integer-typed value from 8 to 64-bits. As with the shift functions, positive shifts
are leftward.

Fixed a bug with anonymous return types of procedures. Thus, public procedures
may return (pointers to) anonymous arrays of public types without error.

Corrected an error with anonymous procedure types on the JVM version.

The IL emitter of the .NET version now uses the invariant culture to write REAL
literal values. This fixes an issue for host machines with non-Anglocentric local-
ization settings.

Changes from 1.3.14

The following change is included in the 1.3.15 release.

*

*

The prohibition on writing to the guarded variable within a WITH statement has
been varied to make it compatible with the behavior of BlackBox Component
Builder. If the guarded variable is of record type it is now allowed to write to
the fields. However any attempt to change the type of the guarded variable is a
semantic error.

The behavior with pointer types is unchanged. The fields of the object may be
written to, but the pointer itself is read-only.

Changes from 1.3.13

The following corrections and changes are included in the 1.3.14 release.

*

Procedure Types and variables are now supported for the JVM target, with the
same limitation as for the .NET target. Specifically, values of procedure type
are compatible if the types have the same name. The Report requires that values
with the same signature be compatible.

A error in the generation of the value copy runtime support methods for the
JVM target has been corrected. The error was rather obscure, but caused some
permitted entire assignments to fail to copy some base-class fields under certain
specific circumstances.

10 GPCP COMMUNITY 37

Changes from 1.3.12

The following corrections and changes are included in the 1.3.13 release.

*

*

A significant rewrite of J2CPS has corrected a bug. The bug caused a module
import to be missed under certain very specific, rare circumstances.

gpcp now populates the definition of RTS.NativeObject with the appropriate
methods from the underlying platform base type, java.lang.Object or or Sys-
tem.Object, depending on the target platform setting. This means that, for exam-
ple, a type derived from RTS.NativeObject may override these methods without
an explicit import of the whole of the system module.

Changes from 1.3.11

The following corrections and changes are included in the 1.3.12 release.

*

Symbol file reading and writing have been modified so that string literals may
include arbitrary Unicode, and be of unbounded size.

Literal handling throughout the compiler has been rewritten to allow for the pos-
sibility that strings might contain embedded NUL characters.

Reading and writing of Unicode character sequences in symbol files now uses
modified UTF-8.

A new pseudo-module import STA causes the compiler to emit a code wrapper
that runs the module body in a new thread with the STA property set to true.

Some significant errors in the implementation of vectors of CHAR element type
have been corrected, as has some inconsistency in the implementation of entire
assignment for the vector types.

Some programs that imported both RTS and mscorlib were were finding that
native string receivers were being denied access to the inherited methods of Sys-
tem.Object. This is now fixed.

Programs using the TYPEOF extension function now work correctly when com-
piled with PERWAPI.

One consequence of these changes is that conversions between character arrays, string
literals and open arrays of characters have been made consistent with the language
standard. This might constitute a breaking change for programs that were relying on
an implicit “stringification” of an argument array. Within the code of the compiler
there was exactly one case where a call that passed an argument array “arr’ had to be
changed to the correct, “arrs”, form.

Changes from 1.3.10

The following corrections and changes are included in the 1.3.11 release.

*

*

A new diagnostic message is added for unresolved opaque types when using the
/perwapi option.

When an opaque type is unresolved due to a missing import the PEFile Writer
attempts to correct the situation by generating a dummy import and a correspond-
ing type-ref descriptor.

10 GPCP COMMUNITY 38

Changes from 1.3.9

The following corrections and changes are included in the 1.3.10 release.

*

The resolution of calls to overloaded methods from foreign language libraries
now takes place in two steps. First an exact match of the argument types to the
method formals is attempted, followed, if necessary, by a match which uses no
type conversions other than between the Component Pascal character array types
and the platform string type, and between the Component Pascal ANYREC and
ANYPTR types and the platform object type.

The dummy symbol files produced by PeToCps from PE-files now ignores non-
CLS compliant methods that Component Pascal cannot call.

Some corrections to the encoding of the “vector types” extension avoid verifier
objections.

Some corrections to code of the separate PERWAPI project avoid certain failures
of PeToCps.

PeToCps does not create version information in symbol files for PE-files that are
versioned but not strongly named.

gpcp now produces code for procedures with covariant return types that is veri-
fiable.

The RealStr library now uses the invariant culture methods from the runtime
system for RealToStr and StrToReal. If you need the localized methods you may
directly access the methods in the runtime system library “RTS.d11”.

The gpcp scanner also now uses the invariant culture methods for real literals
uniformly in all cases.

The symbol file for the ProgArgs library now reveals the previously undocu-
mented method GetEnvVar which (only in the .NET version) returns environ-
ment variable strings.

The changes to overload resolution do not constitute a breaking change, since all pre-
viously working cases will still work. However, a useful set of extra cases are handled.
See also the comments in the new example program Params.cp in the NETexamples
directory.

Changes from 1.3.8

The following corrections are included in the 1.3.9 release.

*

*

*

PeToCps extracts public key tokens from PE-files using new methods of PER-
WAPI. This avoids an issue with compact framework libraries.

BOX once again works correctly on .NET framework structs.

Constructors with arguments for Component Pascal types that extend foreign
classes now work as documented.

10 GPCP COMMUNITY 39

Changes from 1.3.6

The following changes and corrections are included in the 1.3.8 release.

*

PeToCps has been extended to correctly deal with foreign PE-files from the com-
pact framework.

Limited records may be extended, but only in the defining module. New error
messages are attached to the new semantic checks.

New switch /quiet makes gpcp run silently whenever possible.

New switch /cpsym=XXX allows the symbol file lookup path to be varied from
the command line.

CPMake may be started on a module which is not a “main” module. If a non-
main module is used as a starting point a warning is issued to ensure that the
choice was deliberate.

Uninitialized local variables of pointer type now attract only a warning.

Empty CASE and WITH statements no longer cause the compiler to trap, but
attract a warning in the absence of an ELSE branch.

Browse now emits import statements in v1.3.6 extended syntax.

The new import syntax is disallowed when /strict is in force.

Changes from 1.3.4

The following changes and corrections are included in the 1.3.6 release.

*

The import declaration syntax is extended to allow foreign imports to be declared
using their .NET syntax rather than by using the canonicalized names generated
by PeToCps.

Latin-8 characters are permitted in identifiers and strings.

Much improved error reporting based on text-spans rather than (line, column)
pairs. This feature also upgrades the stepping behavior in the GuiDebug debug-
ger.

New /perwapi option forces use of PERWAPI even when producing debug-
gable PE-files. This depends on the new version of PERWAPI, which can read
and write x . pdb files.

A bug in the parsing of numeric tokens ending in H and L is fixed.

New errors are reported for numbers too large for H format, and for numbers
even too large for L format.

A bug in the BITS function on integers larger than max-int has been fixed.

10 GPCP COMMUNITY 40

Changes from 1.3.3
The following changes and corrections are included in the 1.3.4 release.

+ A more flexible canonicalization of assembly names has been introduced, to al-
low access to assemblies with filenames containing characters illegal in Compo-
nent Pascal identifiers

+ Fixed some incorrect cases of coercion of character arrays to native strings

+ Fixed some incorrect cases of usage for MIN, MAX and INC for short integral
types

= Fixed an error in some usages of arrays of procedure types

Changes from 1.3.0
The following changes and corrections are included in the 1.3.1 release.

* A new symbol file generator PeToCps replaces N2CPS. As a result, static meth-
ods, fields and constants are available for the system value types that map into
the built-in types of Component Pascal.

% Browse displays the names of formal parameters if these are available in the
symbol file. Browse has a new “/hex” option so as to output integer literals in
hexadecimal notation. Browse has a new ‘/sort” option so as to output types and
static features in sorted order.

+ LEN now allows an argument that is an array typename, as well as the traditional
case of a variable designator.

+ New Built-in constants INF, NEGINF have been implemented. These may be
used either as REAL or SHORTREAL values.

* The treatment of foreign modules that overload member names with fields as
well as methods are now correctly handled. This is permissible behaviour in
Java, but not C#.

x Calls of NEW on open arrays with multiple dimensions now correctly handle
arbitrary expressions in the length arguments.

+ Extremely long method signature strings in the JVM emitter now no longer cause
a compiler panic.
Changes from 1.2.0
The following changes and corrections are included in the 1.2.x release.
x Support for boxing and unboxing of CLS value types is included.
+ The vector types have been included.

+ The parser now allows return types and formal parameters to be anonymous
constructed types. The compiler gives a warning when the type so defined will
be inaccessible and hence useless.

10 GPCP COMMUNITY 41

*

A string library StringLib has been included.
Some corrections have been made to the RealStr library.

The “WinMain” pseudo-module introduced to mark base modules for windows
executables that do not start a console when launched.

Unsafe facilities in module “sYSTEM” introduced.

Enhanced compatability between native strings, string literals and character lit-
erals.

Correction to the semantics of subset inclusion tests, both versions.

Changes from 1.1.6

The following changes and corrections are included in the 1.2.0 release.

*

The semantics of “super-calls” were incorrect in the case that the immediate
super-type did not define the method being overridden. In version 1.2 the nota-
tion “Foo” ()~ denotes the overridden method no matter how distant it is in the
inheritance hierarchy.

New options have been implemented for output directories.

The default behavior for the “/nodebug” option is to use the direct PE-file
writer. This is significantly faster than going through ilasm. Unfortunately,
this new file-writer does not produce debug symbols at this stage. There is sepa-
rate documentation for the PERWAPI component included with this release.

The permitted semantics for constructors with arguments is significantly en-
hanced. This is of some importance when deriving from types that do not have
public no-arg constructors.

Changes from 1.1.4

The following changes and corrections are included in the 1.1.6 release.

*

Uplevel addressing of reference parameters is now permitted in the .NET release,
although this has inexact semantics in some cases.

A number of corrections to the JVM code-emitter have been added.
The new built-in function BOX has been added.
Trapping of types that attempt to indirectly include themselves is improved.

An automatic renaming scheme is implemented for modules that attempt to ex-
port types with the same name as the module on the .NET platform.

10 GPCP COMMUNITY 42

Changes from 1.1.3

The following changes and corrections are included in the 1.1.4 release.

*

The copyright notice has been revised. gpcp is still open source, but now has a
“FreeBSD-like” licence agreement.

A correction to the Java class-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’t care, but most browsers objected!

It is now permitted to export type-bound procedures of non-exported types, pro-
vided the procedure overrides an exported method of a super-type.

More line-markers are emitted to /L in .NET. This makes it possible to place a
breakpoint on the predicate of a conditional statement, and have the debugger
stop on the predicate rather than the next executable statement.

The type-resolution code of “symFileRW.cp” has been radically revised. It is
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.

11 APPENDIX: WORKING WITH NATIVE STRINGS 43

11 Appendix: Working with Native Strings

There are some subtleties in converting to native strings. The following example
demonstrates several strategies. The example tries to call the equals() method of
Jjava.lang.String to compare with a Component Pascal literal string.

MODULE StringCompare;

IMPORT JL := java-lang, CPmain;
VAR type : JL.Class;
name : JL.String;
1tNm : JL.String;
sObj : JL.Object;
BEGIN
name := type.getName();

(*

x This attempt works because String.equals() is not overloaded

x This binds to the procedure matching

* PROCEDURE (s : JL.String)equalsx* (JL.Object) : BOOLEAN
*)

IF name.equals ("Blah") THEN END;

(*

x Conversions use built-in functions. Here is a non-standard one that converts

x char-arrays to native strings. This works ...

*)

IF name.equals (MKSTR("Blah")) THEN END;
(*

* In the case of assigments (or non-overloaded method calls), the compiler can
* work it out by itself without the MKSTR. Literal char arrays can be assigned to
x objects or strings. This works.

*)

1tNm := "Blah"; (% gpcp automatically converts the string to JL.String *)
IF name.equals (1tNm) THEN END;
(*

* In the case of reference variables the type-assertion / cast syntax does work —
x the following two calls bind to the same method.

*)

sObj := "Blah"; (x gpcp automatically converts the string to JL.Object x)
IF name.equals (sObj) THEN END;

IF name.equals (sObj(JL.String)) THEN END;

END StringCompare.

The eqivalent example using the libraries of the .NET platform is much more compli-
cated, because the Equals method of the native string type has several overloads. The
release notes for the . NET version treat the example in some detail.

12 Appendix: Overriding the Default Naming

The default naming scheme for the JVM version of gpcp uses the module name as the
stem name for the output files, the JVM package name and the dummy static class
name. All of these defaults may be overridden as described here. This may be neces-
sary if another component expects a particular naming pattern.

12 APPENDIX: OVERRIDING THE DEFAULT NAMING 44

Consider the following short program —

MODULE ModId; (x default naming will be used)
TYPE ClsIdx = RECORD ... END;
END ModId;

In this case the name of the output class files will be “CP/ModId/ModId.class”
and “CP/ModId/ModId-ClsId.class”. The name of the dummy static class will be
“CP.Modld.Modld”, and the name of the class that represents the record type will be
“CP.Modld.Modld_Clsld”.

It is allowed to follow the module name with a bracketed string that specifies the
complete package name of the resulting classes. A typical string would be —

MODULE ModId ["CP.Foo"]; (x explicit package name)
TYPE ClsIdx = RECORD ... END;
END ModId;

In this case the name of the base class file will be “CP/Foo/ModId.class”, and the
name of the dummy static class will be “CP.Foo.Modld”. The name of the class that
represents the record type will be “CP.Foo.Modld_ClsId”, which will be found in file
“CP/Foo/ModId.ClsId.class”.

The only special case is that of an empty package name, signified by an explicit
empty string.

MODULE ModId [""1; (* empty package name)
TYPE ClsIdx = RECORD ... END;
END ModId;

In this case the name of the base class file will be “ModId.class”, and the name of the
dummy static class will be “Modld”. The name of the class that represents the record
type will be “ModId_Clsld”, which will be found in file “Mod1d_C1sId.class”.

For the .NET target there is a special case that arises if an explicit class has the
same name as the module. On that platform an automatic renaming of the symbol file
and dummy static class is required. On the JVM platform the case is innocuous.

MODULE ClsId; (* module name clashes with class id *)
TYPE ClsIdx = RECORD ... END;
END ClsId;

In this case the name of the base class file will be “cP/ClsId/ClsId.class”, and
the name of the dummy static class will be “CP.Cisld.Clsld”. The name of the class
that represents the record type will be “CP.Foo.Clsld_Clsld”, which will be found in
file “cP/Foo/ClsId.ClsId.class”.

	Introduction
	Overall Structure
	Input and Output files
	Invoking the compiler
	The cprun script
	Target choice
	Runtime checking
	Listing output
	Statistics output
	Setting the hash table size
	Choosing the Output Directories
	The Make utility
	Module Interface Browser
	Symbol File Generator J2CPS

	Lexical Issues
	Latin-8 Character Set
	Unicode Literal Strings
	Non-standard Keywords
	Java Package and Class Names
	Identifier syntax

	Semantic Issues
	Class files and entry points
	Unimplemented constructs
	Additional Arithmetic Operators
	Semantics of the WITH statement
	Extensible arrays: the vector types
	Implementing foreign interfaces
	Unsigned byte type on .NET platform
	Runtime type descriptors
	Additional built-in functions
	Functions MKSTR and BOX
	Function USHORT
	Function TYPEOF
	Functions LSH and ROT
	Changes for ASH

	Deprecated features and warnings
	Program executable verification
	Unchecked arithmetic

	Exception Handling
	The RESCUE clause
	The THROW statement

	Facilities of the CP Runtime System
	Supplied libraries
	The runtime system (RTS)
	The ProgArgs library
	The RealStr library
	The StringLib library
	The SYSTEM facilities
	The StdIn library

	Foreign Language Interface
	Accessing the underlying native types
	Compiling dummy definition modules
	Accessing Static Features of Foreign Classes

	Creating and Using Foreign Definition Modules
	Syntax of Foreign Definitions
	Explicit package or namespace names
	Dealing with overloaded names
	Interfacing to constructors
	Declaring static features of classes
	Automatic module renaming

	Installing and Trying the Compiler
	Installation
	Installation on Windows
	Installation on UNIX
	Class-file loading

	GPCP Community
	Change summary

	Appendix: Working with Native Strings
	Appendix: Overriding the Default Naming

